This example notebooks illustrates how to visualize uplift trees for interpretation and diagnosis.
These visualization functions work only for tree-based algorithms:
Currently, they are NOT supporting Meta-learner algorithms
This notebook will show how to use visualization for:
Uplift Tree and Uplift Random Forest
Training and Validation Data
One Treatment Group and Multiple Treatment Groups
from causalml.dataset import make_uplift_classification
from causalml.inference.tree import UpliftTreeClassifier, UpliftRandomForestClassifier
from causalml.inference.tree import uplift_tree_string, uplift_tree_plot
import numpy as np
import pandas as pd
from IPython.display import Image
from sklearn.model_selection import train_test_split
# Data generation
df, x_names = make_uplift_classification()
# Rename features for easy interpretation of visualization
x_names_new = ['feature_%s'%(i) for i in range(len(x_names))]
rename_dict = {x_names[i]:x_names_new[i] for i in range(len(x_names))}
df = df.rename(columns=rename_dict)
x_names = x_names_new
df.head()
df = df[df['treatment_group_key'].isin(['control','treatment1'])]
# Look at the conversion rate and sample size in each group
df.pivot_table(values='conversion',
index='treatment_group_key',
aggfunc=[np.mean, np.size],
margins=True)
mean | size | |
---|---|---|
conversion | conversion | |
treatment_group_key | ||
control | 0.5110 | 1000 |
treatment1 | 0.5140 | 1000 |
All | 0.5125 | 2000 |
# Split data to training and testing samples for model validation (next section)
df_train, df_test = train_test_split(df, test_size=0.2, random_state=111)
# Train uplift tree
uplift_model = UpliftTreeClassifier(max_depth = 4, min_samples_leaf = 200, min_samples_treatment = 50, n_reg = 100, evaluationFunction='KL', control_name='control')
uplift_model.fit(df_train[x_names].values,
treatment=df_train['treatment_group_key'].values,
y=df_train['conversion'].values)
<causalml.inference.tree.models.UpliftTreeClassifier at 0x7f211a8704a8>
# Print uplift tree as a string
result = uplift_tree_string(uplift_model.fitted_uplift_tree, x_names)
feature_17 >= -1.3785915096595742? yes -> feature_0 >= -0.6364361308885705? yes -> feature_6 >= -0.7090765407021462? yes -> {'treatment1': 0.603448, 'control': 0.470297} no -> {'treatment1': 0.449612, 'control': 0.495798} no -> {'treatment1': 0.46988, 'control': 0.52381} no -> {'treatment1': 0.388489, 'control': 0.559055}
# Plot uplift tree
graph = uplift_tree_plot(uplift_model.fitted_uplift_tree,x_names)
Image(graph.create_png())
Note the validation uplift score will update.
### Fill the trained tree with testing data set
# The uplift score based on testing dataset is shown as validation uplift score in the tree nodes
uplift_model.fill(X=df_test[x_names].values, treatment=df_test['treatment_group_key'].values, y=df_test['conversion'].values)
# Plot uplift tree
graph = uplift_tree_plot(uplift_model.fitted_uplift_tree,x_names)
Image(graph.create_png())
# Split data to training and testing samples for model validation (next section)
df_train, df_test = train_test_split(df, test_size=0.2, random_state=111)
# Train uplift tree
uplift_model = UpliftRandomForestClassifier(n_estimators=5, max_depth = 5, min_samples_leaf = 200, min_samples_treatment = 50, n_reg = 100, evaluationFunction='KL', control_name='control')
uplift_model.fit(df_train[x_names].values,
treatment=df_train['treatment_group_key'].values,
y=df_train['conversion'].values)
# Specify a tree in the random forest (the index can be any integer from 0 to n_estimators-1)
uplift_tree = uplift_model.uplift_forest[0]
# Print uplift tree as a string
result = uplift_tree_string(uplift_tree.fitted_uplift_tree, x_names)
feature_17 >= -1.4802946520331732? yes -> feature_15 >= 1.028652295155747? yes -> feature_4 >= 1.1517351173273966? yes -> {'treatment1': 0.646018, 'control': 0.25} no -> {'treatment1': 0.525547, 'control': 0.411765} no -> feature_16 >= -0.9531241143484912? yes -> {'treatment1': 0.513661, 'control': 0.397959} no -> feature_14 >= -0.2021677782274923? yes -> {'treatment1': 0.417323, 'control': 0.611511} no -> {'treatment1': 0.546154, 'control': 0.575342} no -> {'treatment1': 0.407767, 'control': 0.529412}
# Plot uplift tree
graph = uplift_tree_plot(uplift_tree.fitted_uplift_tree,x_names)
Image(graph.create_png())
### Fill the trained tree with testing data set
# The uplift score based on testing dataset is shown as validation uplift score in the tree nodes
uplift_tree.fill(X=df_test[x_names].values, treatment=df_test['treatment_group_key'].values, y=df_test['conversion'].values)
# Plot uplift tree
graph = uplift_tree_plot(uplift_tree.fitted_uplift_tree,x_names)
Image(graph.create_png())
# Data generation
df, x_names = make_uplift_classification()
# Look at the conversion rate and sample size in each group
df.pivot_table(values='conversion',
index='treatment_group_key',
aggfunc=[np.mean, np.size],
margins=True)
mean | size | |
---|---|---|
conversion | conversion | |
treatment_group_key | ||
control | 0.511 | 1000 |
treatment1 | 0.514 | 1000 |
treatment2 | 0.559 | 1000 |
treatment3 | 0.600 | 1000 |
All | 0.546 | 4000 |
# Split data to training and testing samples for model validation (next section)
df_train, df_test = train_test_split(df, test_size=0.2, random_state=111)
# Train uplift tree
uplift_model = UpliftTreeClassifier(max_depth = 3, min_samples_leaf = 200, min_samples_treatment = 50, n_reg = 100, evaluationFunction='KL', control_name='control')
uplift_model.fit(df_train[x_names].values,
treatment=df_train['treatment_group_key'].values,
y=df_train['conversion'].values)
<causalml.inference.tree.models.UpliftTreeClassifier at 0x7f211a6b5f98>
# Plot uplift tree
# The uplift score represents the best uplift score among all treatment effects
graph = uplift_tree_plot(uplift_model.fitted_uplift_tree,x_names)
Image(graph.create_png())
# Save the graph as pdf
graph.write_pdf("tbc.pdf")
# Save the graph as png
graph.write_png("tbc.png")
True