from sympy import symbols
from sympy.core.trace import Tr
from sympy.matrices.matrices import Matrix
from IPython.core.display import display_pretty
from sympy.printing.latex import *
%load_ext sympyprinting
a, b, c, d = symbols('a b c d');
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
t
latex(t)
\mbox{Tr}\left(A B\right)
display_pretty(t)
Tr(ρ((❘1,1⟩, 0.5),(❘1,-1⟩, 0.5)))
t = Tr ( Matrix([ [2,3], [3,4] ]))
t
from sympy.physics.quantum.density import Density
from sympy.physics.quantum.spin import (
Jx, Jy, Jz, Jplus, Jminus, J2,
JxBra, JyBra, JzBra,
JxKet, JyKet, JzKet,
)
d = Density([JzKet(1,1),0.5],[JzKet(1,-1),0.5]); d
t = Tr(d)
t
latex(t)
\mbox{Tr}\left(\rho\left(\begin{pmatrix}{\left|1,1\right\rangle }, & 0.5\end{p matrix},\begin{pmatrix}{\left|1,-1\right\rangle }, & 0.5\end{pmatrix}\right)\r ight)
t.doit()