Author: J. R. Johansson (robert@riken.jp), http://dml.riken.jp/~rob/
The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/qutip-lectures.
The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from qutip import *
The Dicke Hamiltonian consists of a cavity mode and $N$ spin-1/2 coupled to the cavity:
$\displaystyle H_D = \omega_0 J_z + \omega a^\dagger a + \frac{\lambda}{\sqrt{N}}(a + a^\dagger)(J_+ + J_-)$
where $J_z$ and $J_\pm$ are the collective angular momentum operators for a pseudospin of length $j=N/2$ :
$\displaystyle J_\pm = \sum_{i=1}^N \sigma_\pm^{(i)}$
w = 1.0
w0 = 1.0
g = 1.0
gc = sqrt(w * w0)/2 # critical coupling strength
kappa = 0.05
gamma = 0.15
M = 16
N = 4
j = N/2.0
n = 2*j + 1
a = tensor(destroy(M), qeye(n))
Jp = tensor(qeye(M), jmat(j, '+'))
Jm = tensor(qeye(M), jmat(j, '-'))
Jz = tensor(qeye(M), jmat(j, 'z'))
H0 = w * a.dag() * a + w0 * Jz
H1 = 1.0 / sqrt(N) * (a + a.dag()) * (Jp + Jm)
H = H0 + g * H1
H
fig, ax = plt.subplots(1, 1, figsize=(10,10))
hinton(H, ax=ax);
g_vec = np.linspace(0.01, 1.0, 20)
# Ground state and steady state for the Hamiltonian: H = H0 + g * H1
psi_gnd_list = [(H0 + g * H1).groundstate()[1] for g in g_vec]
n_gnd_vec = expect(a.dag() * a, psi_gnd_list)
Jz_gnd_vec = expect(Jz, psi_gnd_list)
fig, axes = plt.subplots(1, 2, sharex=True, figsize=(12,4))
axes[0].plot(g_vec, n_gnd_vec, 'b', linewidth=2, label="cavity occupation")
axes[0].set_ylim(0, max(n_gnd_vec))
axes[0].set_ylabel("Cavity gnd occ. prob.", fontsize=16)
axes[0].set_xlabel("interaction strength", fontsize=16)
axes[1].plot(g_vec, Jz_gnd_vec, 'b', linewidth=2, label="cavity occupation")
axes[1].set_ylim(-j, j)
axes[1].set_ylabel(r"$\langle J_z\rangle$", fontsize=16)
axes[1].set_xlabel("interaction strength", fontsize=16)
fig.tight_layout()
psi_gnd_sublist = psi_gnd_list[::4]
xvec = np.linspace(-7,7,200)
fig_grid = (3, len(psi_gnd_sublist))
fig = plt.figure(figsize=(3*len(psi_gnd_sublist),9))
for idx, psi_gnd in enumerate(psi_gnd_sublist):
# trace out the cavity density matrix
rho_gnd_cavity = ptrace(psi_gnd, 0)
# calculate its wigner function
W = wigner(rho_gnd_cavity, xvec, xvec)
# plot its wigner function
ax = plt.subplot2grid(fig_grid, (0, idx))
ax.contourf(xvec, xvec, W, 100)
# plot its fock-state distribution
ax = plt.subplot2grid(fig_grid, (1, idx))
ax.bar(arange(0, M), real(rho_gnd_cavity.diag()), color="blue", alpha=0.6)
ax.set_ylim(0, 1)
ax.set_xlim(0, M)
# plot the cavity occupation probability in the ground state
ax = plt.subplot2grid(fig_grid, (2, 0), colspan=fig_grid[1])
ax.plot(g_vec, n_gnd_vec, 'r', linewidth=2, label="cavity occupation")
ax.set_xlim(0, max(g_vec))
ax.set_ylim(0, max(n_gnd_vec)*1.2)
ax.set_ylabel("Cavity gnd occ. prob.", fontsize=16)
ax.set_xlabel("interaction strength", fontsize=16)
for g in g_vec[::4]:
ax.plot([g,g],[0,max(n_gnd_vec)*1.2], 'b:', linewidth=2.5)
entropy_tot = zeros(shape(g_vec))
entropy_cavity = zeros(shape(g_vec))
entropy_spin = zeros(shape(g_vec))
for idx, psi_gnd in enumerate(psi_gnd_list):
rho_gnd_cavity = ptrace(psi_gnd, 0)
rho_gnd_spin = ptrace(psi_gnd, 1)
entropy_tot[idx] = entropy_vn(psi_gnd, 2)
entropy_cavity[idx] = entropy_vn(rho_gnd_cavity, 2)
entropy_spin[idx] = entropy_vn(rho_gnd_spin, 2)
fig, axes = plt.subplots(1, 1, figsize=(12,6))
axes.plot(g_vec, entropy_tot, 'k', g_vec, entropy_cavity, 'b', g_vec, entropy_spin, 'r--')
axes.set_ylim(0, 1.5)
axes.set_ylabel("Entropy of subsystems", fontsize=16)
axes.set_xlabel("interaction strength", fontsize=16)
fig.tight_layout()
def calulcate_entropy(M, N, g_vec):
j = N/2.0
n = 2*j + 1
# setup the hamiltonian for the requested hilbert space sizes
a = tensor(destroy(M), qeye(n))
Jp = tensor(qeye(M), jmat(j, '+'))
Jm = tensor(qeye(M), jmat(j, '-'))
Jz = tensor(qeye(M), jmat(j, 'z'))
H0 = w * a.dag() * a + w0 * Jz
H1 = 1.0 / sqrt(N) * (a + a.dag()) * (Jp + Jm)
# Ground state and steady state for the Hamiltonian: H = H0 + g * H1
psi_gnd_list = [(H0 + g * H1).groundstate()[1] for g in g_vec]
entropy_cavity = zeros(shape(g_vec))
entropy_spin = zeros(shape(g_vec))
for idx, psi_gnd in enumerate(psi_gnd_list):
rho_gnd_cavity = ptrace(psi_gnd, 0)
rho_gnd_spin = ptrace(psi_gnd, 1)
entropy_cavity[idx] = entropy_vn(rho_gnd_cavity, 2)
entropy_spin[idx] = entropy_vn(rho_gnd_spin, 2)
return entropy_cavity, entropy_spin
g_vec = np.linspace(0.2, 0.8, 60)
N_vec = [4, 8, 12, 16, 24, 32]
MM = 25
fig, axes = plt.subplots(1, 1, figsize=(12,6))
for NN in N_vec:
entropy_cavity, entropy_spin = calulcate_entropy(MM, NN, g_vec)
axes.plot(g_vec, entropy_cavity, 'b', label="N = %d" % NN)
axes.plot(g_vec, entropy_spin, 'r--')
axes.set_ylim(0, 1.75)
axes.set_ylabel("Entropy of subsystems", fontsize=16)
axes.set_xlabel("interaction strength", fontsize=16)
axes.legend()
<matplotlib.legend.Legend at 0x7fd90a4c6630>
# average number thermal photons in the bath coupling to the resonator
n_th = 0.25
c_ops = [sqrt(kappa * (n_th + 1)) * a, sqrt(kappa * n_th) * a.dag()]
#c_ops = [sqrt(kappa) * a, sqrt(gamma) * Jm]
g_vec = np.linspace(0.01, 1.0, 20)
# Ground state for the Hamiltonian: H = H0 + g * H1
rho_ss_list = [steadystate(H0 + g * H1, c_ops) for g in g_vec]
# calculate the expectation value of the number of photons in the cavity
n_ss_vec = expect(a.dag() * a, rho_ss_list)
fig, axes = plt.subplots(1, 1, sharex=True, figsize=(8,4))
axes.plot(g_vec, n_gnd_vec,'b', linewidth=2, label="cavity groundstate")
axes.plot(g_vec, n_ss_vec, 'r', linewidth=2, label="cavity steadystate")
axes.set_ylim(0, max(n_ss_vec))
axes.set_ylabel("Cavity occ. prob.", fontsize=16)
axes.set_xlabel("interaction strength", fontsize=16)
axes.legend(loc=0)
fig.tight_layout()
rho_ss_sublist = rho_ss_list[::4]
xvec = np.linspace(-6,6,200)
fig_grid = (3, len(rho_ss_sublist))
fig = plt.figure(figsize=(3*len(rho_ss_sublist),9))
for idx, rho_ss in enumerate(rho_ss_sublist):
# trace out the cavity density matrix
rho_ss_cavity = ptrace(rho_ss, 0)
# calculate its wigner function
W = wigner(rho_ss_cavity, xvec, xvec)
# plot its wigner function
ax = plt.subplot2grid(fig_grid, (0, idx))
ax.contourf(xvec, xvec, W, 100)
# plot its fock-state distribution
ax = plt.subplot2grid(fig_grid, (1, idx))
ax.bar(arange(0, M), real(rho_ss_cavity.diag()), color="blue", alpha=0.6)
ax.set_ylim(0, 1)
# plot the cavity occupation probability in the ground state
ax = plt.subplot2grid(fig_grid, (2, 0), colspan=fig_grid[1])
ax.plot(g_vec, n_gnd_vec,'b', linewidth=2, label="cavity groundstate")
ax.plot(g_vec, n_ss_vec, 'r', linewidth=2, label="cavity steadystate")
ax.set_xlim(0, max(g_vec))
ax.set_ylim(0, max(n_ss_vec)*1.2)
ax.set_ylabel("Cavity gnd occ. prob.", fontsize=16)
ax.set_xlabel("interaction strength", fontsize=16)
for g in g_vec[::4]:
ax.plot([g,g],[0,max(n_ss_vec)*1.2], 'b:', linewidth=5)
entropy_tot = zeros(shape(g_vec))
entropy_cavity = zeros(shape(g_vec))
entropy_spin = zeros(shape(g_vec))
for idx, rho_ss in enumerate(rho_ss_list):
rho_gnd_cavity = ptrace(rho_ss, 0)
rho_gnd_spin = ptrace(rho_ss, 1)
entropy_tot[idx] = entropy_vn(rho_ss, 2)
entropy_cavity[idx] = entropy_vn(rho_gnd_cavity, 2)
entropy_spin[idx] = entropy_vn(rho_gnd_spin, 2)
fig, axes = plt.subplots(1, 1, figsize=(12,6))
axes.plot(g_vec, entropy_tot, 'k', label="total")
axes.plot(g_vec, entropy_cavity, 'b', label="cavity")
axes.plot(g_vec, entropy_spin, 'r--', label="spin")
axes.set_ylabel("Entropy of subsystems", fontsize=16)
axes.set_xlabel("interaction strength", fontsize=16)
axes.legend(loc=0)
fig.tight_layout()
from qutip.ipynbtools import version_table
version_table()
Software | Version |
---|---|
SciPy | 0.13.3 |
Numpy | 1.8.1 |
QuTiP | 3.0.0.dev-5a88aa8 |
IPython | 2.0.0 |
Python | 3.4.1 (default, Jun 9 2014, 17:34:49) [GCC 4.8.3] |
Cython | 0.20.1post0 |
OS | posix [linux] |
matplotlib | 1.3.1 |
Thu Jun 26 14:33:44 2014 JST |