Author: J. R. Johansson (robert@riken.jp), http://dml.riken.jp/~rob/
The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/qutip-lectures.
The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy import *
from qutip import *
In Chapter 12 (Cascaded quantum systems) in Quantum Noise by Gardiner and Zoller (Springer, 3rd edition), a few examples of nonclassically driven atoms are given. In this notebook we solve for the dynamics of those systems using QuTiP.
The master equation for a two-level atom driven by a squeezed light can be written as (Ch. 12.2.2 in Quantum Noise)
$$ \dot\rho = -i[H, \rho] + \kappa\mathcal{D}[a]\rho + \gamma\mathcal{D}[\sigma_-]\rho -\sqrt{\eta\kappa\gamma}\{[\sigma_+, a\rho] + [\rho a^\dagger, \sigma_-]\} $$where
$$ H = i\frac{1}{2}(E {a^\dagger}^2 - E^* a^2) $$and
$$ \mathcal{D}[a]\rho = a \rho a^\dagger - \frac{1}{2}\rho a^\dagger a - \frac{1}{2}a^\dagger a\rho $$N = 10
gamma = 1
eta = 0.9
def solve(N, gamma, kappa, eta):
E = kappa * 0.25
# create operators
a = tensor(destroy(N), identity(2))
sm = tensor(identity(N), destroy(2))
# Hamiltonian
H = 0.5j * (E * a.dag() ** 2 - conjugate(E) * a ** 2)
# master equation superoperators
L0 = liouvillian(H, [sqrt(kappa) * a, sqrt(gamma) * sm])
L1 = - sqrt(kappa * gamma * eta) * (
spre(sm.dag() * a) - spre(a) * spost(sm.dag()) +
spost(a.dag() * sm) - spre(sm) * spost(a.dag()))
L = L0 + L1
# steady state
rhoss = steadystate(L)
# correlation function and spectrum
taulist = linspace(0, 500, 2500)
c = correlation_2op_1t(L, rhoss, taulist, [], sm.dag(), sm)
w, S = spectrum_correlation_fft(taulist, c)
ww = hstack([fliplr(-array([w])).squeeze(), w])
SS = hstack([fliplr(array([S])).squeeze(), S])
return rhoss, ww, SS
rhoss2, w2, S2 = solve(N, gamma, 2, eta)
rhoss4, w4, S4 = solve(N, gamma, 4, eta)
rhoss8, w8, S8 = solve(N, gamma, 8, eta)
wigner_fock_distribution(rhoss2.ptrace(0));
wigner_fock_distribution(rhoss4.ptrace(0));
wigner_fock_distribution(rhoss8.ptrace(0));
/usr/local/lib/python3.4/dist-packages/qutip/visualization.py:869: UserWarning: Deprecated: Use plot_wigner_fock_distribution warnings.warn("Deprecated: Use plot_wigner_fock_distribution")
fig, ax = plt.subplots()
ax.plot(w2, S2 / S2.max(), label=r'$\kappa = 2$')
ax.plot(w4, S4 / S4.max(), label=r'$\kappa = 4$')
ax.plot(w8, S8 / S8.max(), label=r'$\kappa = 8$')
ax.plot(w8, 0.25/((0.5 * gamma)**2 + w8**2), 'k:', label=r'Lorentian')
ax.legend()
ax.set_ylabel(r'Flouresence spectrum', fontsize=16)
ax.set_xlabel(r'$\omega$', fontsize=18)
ax.set_xlim(-2, 2);
Fig. 12.4 in Quantum Noise.
The master equation given in Sec. 12.3.1 in Quantum Noise, for two coupled atoms where the first atom (source atom) is irradiated with coherent light, and the second atom is irradiated by the antibunched light emitted from the source atom, is:
$$ \dot\rho = -i[H, \rho] + \gamma_1\mathcal{D}[\sigma^-_{1}]\rho + \gamma_2\mathcal{D}[\sigma^-_{2}]\rho -\sqrt{(1-\epsilon_1)(1-\epsilon_2)\gamma_1\gamma_2} ([\sigma_2^+, \sigma_1^-\rho] + [\rho\sigma_1^+, \sigma_2^-]) $$where
$$ H = -i\sqrt{\epsilon_1\gamma_1}(E\sigma_1^+ - E^*\sigma_1^-) $$e1 = 0.5
e2 = 0.5
gamma1 = 2
gamma2 = 2
E = 2 / sqrt(e1 * gamma1)
sm1 = tensor(destroy(2), identity(2))
sp1 = sm1.dag()
sm2 = tensor(identity(2), destroy(2))
sp2 = sm2.dag()
H = -1j * sqrt(e1 * gamma1) * (E * sp1 - conjugate(E) * sm1)
L0 = liouvillian(H, [sqrt(gamma1) * sm1, sqrt(gamma2) * sm2])
L1 = - sqrt((1 - e1) * (1 - e2) * gamma1 * gamma2) * \
(spre(sp2 * sm1) - spre(sm1) * spost(sp2) +
spost(sp1 * sm2) - spre(sm2) * spost(sp1))
L = L0 + L1
# steady state
rhoss = steadystate(L)
# correlation function and spectrum
taulist = linspace(0, 4, 250)
G2_11 = correlation_4op_1t(L, rhoss, taulist, [], sp1, sp1, sm1, sm1)
g2_11 = G2_11 / (expect(sp1*sm1, rhoss) * expect(sp1*sm1, rhoss))
G2_22 = correlation_4op_1t(L, rhoss, taulist, [], sp2, sp2, sm2, sm2)
g2_22 = G2_22 / (expect(sp2*sm2, rhoss) * expect(sp2*sm2, rhoss))
G2_12 = correlation_4op_1t(L, rhoss, taulist, [], sp2, sp1, sm1, sm2)
g2_12 = G2_12 / (expect(sp1*sm1, rhoss) * expect(sp2*sm2, rhoss))
G2_21 = correlation_4op_1t(L, rhoss, taulist, [], sp1, sp2, sm2, sm1)
g2_21 = G2_21 / (expect(sp2*sm2, rhoss) * expect(sp1*sm1, rhoss))
fig, ax = plt.subplots()
ax.plot(taulist, g2_11, label=r'$g^{(2)}_{11}(\tau)$')
ax.plot(taulist, g2_22, label=r'$g^{(2)}_{22}(\tau)$')
ax.plot(taulist, g2_12, label=r'$g^{(2)}_{12}(\tau)$')
ax.plot(taulist, g2_21, label=r'$g^{(2)}_{21}(\tau)$')
ax.legend(loc=4)
ax.set_xlabel(r'$\tau$');
Fig. 12.6 in Quantum Noise.
When the source atom is irradiated with incoherent light, the master equation becomes (Sec. 12.3.2 in Quantum Noise)
$$ \dot\rho = \gamma_1\mathcal{D}[\sigma^-_{1}]\rho + \gamma_2\mathcal{D}[\sigma^-_{2}]\rho + \kappa(\bar{N} + 1)\mathcal{D}[a]\rho + \kappa\bar{N}\mathcal{D}[a^\dagger]\rho -\sqrt{2\kappa\eta_1\gamma_1} ([\sigma_1^+, a\rho] + [\rho a^\dagger, \sigma_1^-]) -\sqrt{\eta_2\gamma1\gamma_2} ([\sigma_2^+, \sigma_1^-\rho] + [\rho\sigma_1^+, \sigma_2^-]) $$N = 10
e1 = 0.5
e2 = 0.5
ek = 0.5
n_th = 1
kappa = 0.1
gamma1 = 1
gamma2 = 1
E = 0.025
taulist = linspace(0, 5, 250)
a = tensor(destroy(N), identity(2), identity(2))
sm1 = tensor(identity(N), destroy(2), identity(2))
sp1 = sm1.dag()
sm2 = tensor(identity(N), identity(2), destroy(2))
sp2 = sm2.dag()
def solve(ek, e1, e2, gamma1, gamma2, kappa, n_th, E):
eta1 = (1 - ek) * e1
eta2 = (1 - e1) * (1 - e2)
H = 1j * E * (a - a.dag())
L0 = liouvillian(H, [sqrt(kappa * (1 + n_th)) * a, sqrt(kappa * n_th) * a.dag(),
sqrt(gamma1) * sm1, sqrt(gamma2) * sm2])
L1 = - sqrt(2 * kappa * eta1 * gamma1) * \
(spre(sp1 * a) - spre(a) * spost(sp1) +
spost(a.dag() * sm1) - spre(sm1) * spost(a.dag())) + \
- sqrt(eta2 * gamma1 * gamma2) * \
(spre(sp2 * sm1) - spre(sm1) * spost(sp2) +
spost(sp1 * sm2) - spre(sm2) * spost(sp1))
L = L0 + L1
rhoss = steadystate(L)
G2_11 = correlation_4op_1t(L, rhoss, taulist, [], sp1, sp1, sm1, sm1)
g2_11 = G2_11 / (expect(sp1*sm1, rhoss) * expect(sp1*sm1, rhoss))
G2_22 = correlation_4op_1t(L, rhoss, taulist, [], sp2, sp2, sm2, sm2)
g2_22 = G2_22 / (expect(sp2*sm2, rhoss) * expect(sp2*sm2, rhoss))
G2_12 = correlation_4op_1t(L, rhoss, taulist, [], sp2, sp1, sm1, sm2)
g2_12 = G2_12 / (expect(sp1*sm1, rhoss) * expect(sp2*sm2, rhoss))
G2_21 = correlation_4op_1t(L, rhoss, taulist, [], sp1, sp2, sm2, sm1)
g2_21 = G2_21 / (expect(sp2*sm2, rhoss) * expect(sp1*sm1, rhoss))
return rhoss, g2_11, g2_12, g2_21, g2_22
# thermal
rhoss_t, g2_11_t, g2_12_t, g2_21_t, g2_22_t = solve(ek, e1, e2, gamma1, gamma2,
kappa, n_th, 0.0)
# visualize the cavity state
wigner_fock_distribution(rhoss_t.ptrace(0));
fig, ax = plt.subplots(figsize=(8,4))
ax.plot(taulist, g2_11_t, label=r'$g^{(2)}_{11}(\tau)$')
ax.plot(taulist, g2_22_t, label=r'$g^{(2)}_{22}(\tau)$')
ax.plot(taulist, g2_12_t, label=r'$g^{(2)}_{12}(\tau)$')
ax.plot(taulist, g2_21_t, label=r'$g^{(2)}_{21}(\tau)$')
ax.legend(loc=4)
ax.set_xlabel(r'$\tau$', fontsize=16);
Similar to Fig. 12.8 in Quantum Noise, although not exactly because of different parameters.
from qutip.ipynbtools import version_table; version_table()
Software | Version |
---|---|
IPython | 2.0.0 |
OS | posix [linux] |
Numpy | 1.8.1 |
Cython | 0.20.1post0 |
QuTiP | 3.0.0.dev-5a88aa8 |
SciPy | 0.13.3 |
matplotlib | 1.3.1 |
Python | 3.4.1 (default, Jun 9 2014, 17:34:49) [GCC 4.8.3] |
Thu Jun 26 14:13:04 2014 JST |