Analysis 2016-03-26 10:24:24 +0000
= Statsample::Factor::MAP
There are 2 real factors on data
== Principal Component Analysis
Number of factors: 1
Communalities
+----------+---------+------------+--------+
| Variable | Initial | Extraction | % |
+----------+---------+------------+--------+
| v0 | 1.000 | 0.883 | 88.326 |
| v1 | 1.000 | 0.875 | 87.503 |
| v2 | 1.000 | 0.856 | 85.559 |
| v3 | 1.000 | 0.886 | 88.600 |
| v4 | 1.000 | 0.887 | 88.659 |
| v5 | 1.000 | 0.819 | 81.855 |
| v6 | 1.000 | 0.852 | 85.159 |
| v7 | 1.000 | 0.822 | 82.226 |
| v8 | 1.000 | 0.861 | 86.081 |
| v9 | 1.000 | 0.872 | 87.165 |
+----------+---------+------------+--------+
Total Variance Explained
+--------------+---------+---------+---------+
| Component | E.Total | % | Cum. % |
+--------------+---------+---------+---------+
| Component 1 | 8.611 | 86.113% | 86.113 |
| Component 2 | 0.926 | 9.263% | 95.377 |
| Component 3 | 0.100 | 1.004% | 96.380 |
| Component 4 | 0.089 | 0.894% | 97.274 |
| Component 5 | 0.067 | 0.674% | 97.948 |
| Component 6 | 0.060 | 0.597% | 98.545 |
| Component 7 | 0.043 | 0.429% | 98.974 |
| Component 8 | 0.040 | 0.399% | 99.373 |
| Component 9 | 0.032 | 0.319% | 99.692 |
| Component 10 | 0.031 | 0.308% | 100.000 |
+--------------+---------+---------+---------+
Component matrix
+----+------+
| | PC_1 |
+----+------+
| v0 | .940 |
| v1 | .935 |
| v2 | .925 |
| v3 | .941 |
| v4 | .942 |
| v5 | .905 |
| v6 | .923 |
| v7 | .907 |
| v8 | .928 |
| v9 | .934 |
+----+------+
Traditional Kaiser criterion (k>1) returns 1 factors
== Velicer's MAP
Eigenvalues
+----------+
| Value |
+----------+
| 8.611330 |
| 0.926336 |
| 0.100374 |
| 0.089363 |
| 0.067434 |
| 0.059687 |
| 0.042917 |
| 0.039857 |
| 0.031882 |
| 0.030820 |
+----------+
Velicer's Average Squared Correlations
+----------------------+----------------------------+
| number of components | average square correlation |
+----------------------+----------------------------+
| 0 | 0.722719 |
| 1 | 0.407274 |
| 2 | 0.036444 |
| 3 | 0.060324 |
| 4 | 0.106041 |
| 5 | 0.188101 |
| 6 | 0.225866 |
| 7 | 0.310435 |
| 8 | 0.538523 |
| 9 | 1.000000 |
+----------------------+----------------------------+
The smallest average squared correlation is : 0.036444
The number of components is : 2
Velicer's MAP Test returns 2 factors to preserve