#!/usr/bin/env python # coding: utf-8 # # Mining the Social Web # # ## Mining LinkedIn # # This Jupyter Notebook provides an interactive way to follow along with and explore the examples from the video series. The intent behind this notebook is to reinforce the concepts in a fun, convenient, and effective way. # # LinkedIn API Access # # LinkedIn implements OAuth 2.0 as one of its standard authentication mechanisms, but still supports OAuth 1.0a, which provides you with four credentials ("API Key", "Secret Key", "OAuth User Token", and "OAuth User Secret") that can be used to gain instant API access with no further fuss or redirections. You can create an app and retrieve these four credentials through the "Developer" section of your account settings as shown below or by navigating directly to https://www.linkedin.com/secure/developer. # Note that you'll need to install a third-party package called python3-linkedin to use the code in this notebook. Installing a package directly from a GitHub repository is easy with pip in the terminal: # # # $ pip install python3-linkedin # # # ## Using LinkedIn OAuth credentials to receive an access token suitable for development and accessing your own data # In[ ]: from linkedin import linkedin # pip install python3-linkedin APPLICATON_KEY = '' APPLICATON_SECRET = '' RETURN_URL = 'http://localhost:8888' authentication = linkedin.LinkedInAuthentication( APPLICATON_KEY, APPLICATON_SECRET, RETURN_URL) # Open this URL in the browser and copy the section after 'code=' print(authentication.authorization_url) # In[ ]: # Paste it here authentication.authorization_code = '' result = authentication.get_access_token() print ("Access Token:", result.access_token) print ("Expires in (seconds):", result.expires_in) # ## Retrieving your LinkedIn profile # # The LinkedIn API limits which data can be queried, e.g. you can no longer use the API to retrieve your list of connections on LinkedIn. # # Read about the changes made to LinkedIn's API in February 2015: # # https://developer.linkedin.com/support/developer-program-transition # In[ ]: app = linkedin.LinkedInApplication(token=result.access_token) # In[ ]: # Selector fields: https://developer.linkedin.com/docs/fields app.get_profile(selectors=['id', 'first-name', 'last-name', 'location', 'num-connections', 'headline']) # ## Displaying job position history for your profile # In[ ]: import json # See https://developer.linkedin.com/docs/fields/positions for details # on additional field selectors that can be passed in for retrieving # additional profile information. # Display your own positions... my_positions = app.get_profile(selectors=['positions']) print(json.dumps(my_positions, indent=1)) # ## Using field selector syntax to request additional details for APIs # In[ ]: # See https://developer.linkedin.com/docs/fields/positions # for more information on the field selector syntax my_positions = app.get_profile(selectors=['positions:(company:(name,industry,id))']) print(json.dumps(my_positions, indent=1)) # To get access to more API endpoints, you need to join the LinkedIn Partner Program. We do not cover that here, but for more information visit: # # https://developer.linkedin.com/partner-programs # ## Download your profile data and read in connections data as a CSV file # Go download your LinkedIn data here: # https://www.linkedin.com/psettings/member-data # # Once requested, LinkedIn will prepare an archive of your profile data, which you can then download. Place the contents of the archive in a subfolder, e.g. 'data'. # In[ ]: import os import csv # Point this to your 'Connections.csv' file. CSV_FILE = os.path.join('resources', 'ch03-linkedin', 'Connections.csv') csvReader = csv.DictReader(open(CSV_FILE), delimiter=',', quotechar='"') contacts = [row for row in csvReader] # ## Simple normalization of company suffixes from address book data # In[ ]: from prettytable import PrettyTable # pip install prettytable from collections import Counter from operator import itemgetter # Define a set of transforms that converts the first item # to the second item. Here, we're simply handling some # commonly known abbreviations, stripping off common suffixes, # etc. transforms = [(', Inc.', ''), (', Inc', ''), (', LLC', ''), (', LLP', ''), (' LLC', ''), (' Inc.', ''), (' Inc', '')] companies = [c['Company'].strip() for c in contacts if c['Company'].strip() != ''] for i, _ in enumerate(companies): for transform in transforms: companies[i] = companies[i].replace(*transform) pt = PrettyTable(field_names=['Company', 'Freq']) pt.align = 'l' c = Counter(companies) [pt.add_row([company, freq]) for (company, freq) in sorted(c.items(), key=itemgetter(1), reverse=True) if freq > 1] print(pt) # ## Standardizing common job titles and computing their frequencies # In[ ]: transforms = [ ('Sr.', 'Senior'), ('Sr', 'Senior'), ('Jr.', 'Junior'), ('Jr', 'Junior'), ('CEO', 'Chief Executive Officer'), ('COO', 'Chief Operating Officer'), ('CTO', 'Chief Technology Officer'), ('CFO', 'Chief Finance Officer'), ('VP', 'Vice President'), ] # Read in a list of titles and split apart # any combined titles like "President/CEO." # Other variations could be handled as well, such # as "President & CEO", "President and CEO", etc. titles = [] for contact in contacts: titles.extend([t.strip() for t in contact['Position'].split('/') if contact['Position'].strip() != '']) # Replace common/known abbreviations for i, _ in enumerate(titles): for transform in transforms: titles[i] = titles[i].replace(*transform) # Print out a table of titles sorted by frequency pt = PrettyTable(field_names=['Job Title', 'Freq']) pt.align = 'l' c = Counter(titles) [pt.add_row([title, freq]) for (title, freq) in sorted(c.items(), key=itemgetter(1), reverse=True) if freq > 1] print(pt) # Print out a table of tokens sorted by frequency tokens = [] for title in titles: tokens.extend([t.strip(',') for t in title.split()]) pt = PrettyTable(field_names=['Token', 'Freq']) pt.align = 'l' c = Counter(tokens) [pt.add_row([token, freq]) for (token, freq) in sorted(c.items(), key=itemgetter(1), reverse=True) if freq > 1 and len(token) > 2] print(pt) # ## Geocoding locations with Google Maps # # Visit the Google Developer Console: # # https://console.developers.google.com # # From there, create an API key and enable the 'Google Maps Geocoding API'. Copy and paste the app key below. # In[ ]: from geopy import geocoders # pip install geopy GOOGLEMAPS_APP_KEY = '' g = geocoders.GoogleV3(GOOGLEMAPS_APP_KEY) location = g.geocode("O'Reilly Media") print(location) print('Lat/Lon: {0}, {1}'.format(location.latitude,location.longitude)) print('https://www.google.ca/maps/@{0},{1},17z'.format(location.latitude,location.longitude)) # ## Geocoding locations of LinkedIn connections with Google Maps # # Since LinkedIn only exports basic contact information, which does not include the contact's location, we can try to infer where they located from the company information. This is not inherently accurate, as many companies have multiple locations, but assuming that the person works at the headquarters, or the company is small as has only one location, then this approach should be at least somewhat accurate. # # For example, if someone declares that they work at the University of Toronto, then we can guess that they might also live in Toronto, although it's quite possible that they commute into the city from a nearby town. # In[ ]: for i, c in enumerate(contacts): progress = '{0:3d} of {1:3d} - '.format(i+1,len(contacts)) company = c['Company'] try: location = g.geocode(company, exactly_one=True) except: print('... Failed to get a location for {0}'.format(company)) location = None if location != None: c.update([('Location', location)]) print(progress + company[:50] + ' -- ' + location.address) else: c.update([('Location', None)]) print(progress + company[:50] + ' -- ' + 'Unknown Location') # ## Parsing out states from location results # In[ ]: def checkIfUSA(loc): if loc == None: return False for comp in loc.raw['address_components']: if 'country' in comp['types']: if comp['short_name'] == 'US': return True else: return False def parseStateFromGoogleMapsLocation(loc): try: address_components = loc.raw['address_components'] for comp in address_components: if 'administrative_area_level_1' in comp['types']: return comp['short_name'] except: return None results = {} for c in contacts: loc = c['Location'] if loc == None: continue if not checkIfUSA(loc): continue state = parseStateFromGoogleMapsLocation(loc) if state == None: continue results.update({loc.address : state}) print(json.dumps(results, indent=1)) # ### Write the data to a JSON file, storing the address, latitude, and longitude data for location # In[ ]: CONNECTIONS_DATA = 'linkedin_connections.json' # Loop over contacts and update the location information to store the # string address, also adding latitude and longitude information def serialize_contacts(contacts, output_filename): for c in contacts: location = c['Location'] if location != None: # Convert the location to a string for serialization c.update([('Location', location.address)]) c.update([('Lat', location.latitude)]) c.update([('Lon', location.longitude)]) f = open(output_filename, 'w') f.write(json.dumps(contacts, indent=1)) f.close() return serialize_contacts(contacts, CONNECTIONS_DATA) # **Here's how to power a Cartogram visualization with the data from the "results" variable** # In[ ]: from IPython.display import IFrame from IPython.core.display import display # Load in a data structure mapping state names to codes. # e.g. West Virginia is WV codes = json.loads(open('resources/ch03-linkedin/viz/states-codes.json').read()) from collections import Counter c = Counter([r[1] for r in results.items()]) states_freqs = { codes[k] : v for (k,v) in c.items() } # Lace in all of the other states and provide a minimum value for each of them states_freqs.update({v : 0.2 for v in codes.values() if v not in states_freqs.keys() }) # Write output to file f = open('resources/ch03-linkedin/viz/states-freqs.json', 'w') f.write(json.dumps(states_freqs, indent=1)) f.close() # IPython Notebook can serve files and display them into # inline frames display(IFrame('resources/ch03-linkedin/viz/cartogram.html', '100%', '600px')) # ## Clustering job titles using a greedy heuristic # # In this section, we introduce the Jaccard distance for comparing two sets of strings. The Jaccard distance is based on the Jaccard Index, which is defined as: # # $$ # J(A,B) = {{|A \cap B|}\over{|A \cup B|}} = {{|A \cap B|}\over{|A| + |B| - |A \cap B|}} # $$ # # The Wikipedia page has a good introduction to the [Jaccard Index](https://en.wikipedia.org/wiki/Jaccard_index). # ![Intersection](resources/ch03-linkedin/images/Intersection_of_sets_A_and_B.png) # ![Union](resources/ch03-linkedin/images/Union_of_sets_A_and_B.png) # In[ ]: from nltk.util import bigrams ceo_bigrams = list(bigrams("Chief Executive Officer".split(), pad_left=True, pad_right=True)) cto_bigrams = list(bigrams("Chief Technology Officer".split(), pad_left=True, pad_right=True)) print(ceo_bigrams) print(cto_bigrams) print(len(set(ceo_bigrams).intersection(set(cto_bigrams)))) # **Jaccard distance calculation** # In[ ]: from nltk.metrics.distance import jaccard_distance # pip install nltk job_title_1 = 'Chief Executive Officer'.split() job_title_2 = 'Chief Technology Officer'.split() print(job_title_1) print(job_title_2) print() print('Intersection:') intersection = set(job_title_1).intersection(set(job_title_2)) print(intersection) print() print('Union:') union = set(job_title_1).union(set(job_title_2)) print(union) print() print('Similarity:', len(intersection) / len(union)) print('Distance:', jaccard_distance(set(job_title_1), set(job_title_2))) # In[ ]: job_title_1 = 'Vice President, Sales'.split() job_title_2 = 'Vice President, Customer Relations'.split() print(job_title_1) print(job_title_2) print() print('Intersection:') intersection = set(job_title_1).intersection(set(job_title_2)) print(intersection) print() print('Union:') union = set(job_title_1).union(set(job_title_2)) print(union) print() print('Similarity:', len(intersection) / len(union)) print('Distance:', jaccard_distance(set(job_title_1), set(job_title_2))) # In[ ]: # Tweak this distance threshold and try different distance calculations # during experimentation DISTANCE_THRESHOLD = 0.6 DISTANCE = jaccard_distance def cluster_contacts_by_title(): transforms = [ ('Sr.', 'Senior'), ('Sr', 'Senior'), ('Jr.', 'Junior'), ('Jr', 'Junior'), ('CEO', 'Chief Executive Officer'), ('COO', 'Chief Operating Officer'), ('CTO', 'Chief Technology Officer'), ('CFO', 'Chief Finance Officer'), ('VP', 'Vice President'), ] separators = ['/', ' and ', ' & ', '|', ','] # Normalize and/or replace known abbreviations # and build up a list of common titles. all_titles = [] for i, _ in enumerate(contacts): if contacts[i]['Position'] == '': contacts[i]['Position'] = [''] continue titles = [contacts[i]['Position']] # flatten list titles = [item for sublist in titles for item in sublist] for separator in separators: for title in titles: if title.find(separator) >= 0: titles.remove(title) titles.extend([title.strip() for title in title.split(separator) if title.strip() != '']) for transform in transforms: titles = [title.replace(*transform) for title in titles] contacts[i]['Position'] = titles all_titles.extend(titles) all_titles = list(set(all_titles)) clusters = {} for title1 in all_titles: clusters[title1] = [] for title2 in all_titles: if title2 in clusters[title1] or title2 in clusters and title1 \ in clusters[title2]: continue distance = DISTANCE(set(title1.split()), set(title2.split())) if distance < DISTANCE_THRESHOLD: clusters[title1].append(title2) # Flatten out clusters clusters = [clusters[title] for title in clusters if len(clusters[title]) > 1] # Round up contacts who are in these clusters and group them together clustered_contacts = {} for cluster in clusters: clustered_contacts[tuple(cluster)] = [] for contact in contacts: for title in contact['Position']: if title in cluster: clustered_contacts[tuple(cluster)].append('{0} {1}.'.format( contact['FirstName'], contact['LastName'][0])) return clustered_contacts clustered_contacts = cluster_contacts_by_title() for titles in clustered_contacts: common_titles_heading = 'Common Titles: ' + ', '.join(titles) descriptive_terms = set(titles[0].split()) for title in titles: descriptive_terms.intersection_update(set(title.split())) if len(descriptive_terms) == 0: descriptive_terms = ['***No words in common***'] descriptive_terms_heading = 'Descriptive Terms: ' \ + ', '.join(descriptive_terms) print(common_titles_heading) print('\n'+descriptive_terms_heading) print('-' * 70) print('\n'.join(clustered_contacts[titles])) print() # **How to export data to power a dendogram and node-link tree visualization** # In[ ]: from nltk.metrics.distance import jaccard_distance from nltk.corpus import stopwords # nltk.download('stopwords') from cluster import HierarchicalClustering # pip install cluster CSV_FILE = os.path.join('resources', 'ch03-linkedin', 'Connections.csv') OUT_FILE = 'resources/ch03-linkedin/viz/d3-data.json' # Tweak this distance threshold and try different distance calculations # during experimentation DISTANCE_THRESHOLD = 0.5 DISTANCE = jaccard_distance # Adjust sample size as needed to reduce the runtime of the # nested loop that invokes the DISTANCE function SAMPLE_SIZE = 500 def cluster_contacts_by_title(csv_file): csvReader = csv.DictReader(open(csv_file), delimiter=',', quotechar='"') contacts = [row for row in csvReader] contacts = contacts[:SAMPLE_SIZE] transforms = [ ('Sr.', 'Senior'), ('Sr', 'Senior'), ('Jr.', 'Junior'), ('Jr', 'Junior'), ('CEO', 'Chief Executive Officer'), ('COO', 'Chief Operating Officer'), ('CTO', 'Chief Technology Officer'), ('CFO', 'Chief Finance Officer'), ('VP', 'Vice President'), ] separators = ['/', ' and ', '|', ',', ' & '] # Normalize and/or replace known abbreviations # and build up a list of common titles. all_titles = [] for i, _ in enumerate(contacts): if contacts[i]['Position'] == '': contacts[i]['Position'] = [''] continue titles = [contacts[i]['Position']] for separator in separators: for title in titles: if title.find(separator) >= 0: titles.remove(title) titles.extend([title.strip() for title in title.split(separator) if title.strip() != '']) for transform in transforms: titles = [title.replace(*transform) for title in titles] contacts[i]['Position'] = titles all_titles.extend(titles) all_titles = list(set(all_titles)) # Define a scoring function def score(title1, title2): return DISTANCE(set(title1.split()), set(title2.split())) # Feed the class your data and the scoring function hc = HierarchicalClustering(all_titles, score) # Cluster the data according to a distance threshold clusters = hc.getlevel(DISTANCE_THRESHOLD) # Remove singleton clusters clusters = [c for c in clusters if len(c) > 1] # Round up contacts who are in these clusters and group them together clustered_contacts = {} for cluster in clusters: clustered_contacts[tuple(cluster)] = [] for contact in contacts: for title in contact['Position']: if title in cluster: clustered_contacts[tuple(cluster)].append('{0} {1}.'.format( contact['FirstName'], contact['LastName'][0])) return clustered_contacts, clusters def get_descriptive_terms(titles): flatten = lambda l: [item for sublist in l for item in sublist] title_words = flatten([title.split() for title in titles]) filtered_words = [word for word in title_words \ if word not in stopwords.words('english')] counter = Counter(filtered_words) descriptive_terms = counter.most_common(2) # Get the most common title words from a cluster, ignoring singletons descriptive_terms = [t[0] for t in descriptive_terms if t[1] > 1] return descriptive_terms def display_output(clustered_contacts, clusters): for title_cluster in clusters: descriptive_terms = get_descriptive_terms(title_cluster) common_titles_heading = 'Common Titles: ' + ', '.join((t for t in title_cluster)) descriptive_terms_heading = 'Descriptive Terms: ' + ', '.join((t for t in descriptive_terms)) print(common_titles_heading) print(descriptive_terms_heading) print('-' * 70) #print(title_cluster) #print(clustered_contacts) print('\n'.join(clustered_contacts[tuple(title_cluster)])) print() def write_d3_json_output(clustered_contacts): json_output = {'name' : 'My LinkedIn', 'children' : []} for titles in clustered_contacts: descriptive_terms = get_descriptive_terms(titles) json_output['children'].append({'name' : ', '.join(descriptive_terms)[:30], 'children' : [ {'name' : c} for c in clustered_contacts[titles] ] } ) f = open(OUT_FILE, 'w') f.write(json.dumps(json_output, indent=1)) f.close() clustered_contacts, clusters = cluster_contacts_by_title(CSV_FILE) display_output(clustered_contacts, clusters) write_d3_json_output(clustered_contacts) # **Once you've run the code and produced the output for the dendogram and node-link tree visualizations, here's one way to serve it.** # In[ ]: from IPython.display import IFrame from IPython.core.display import display # Visualize clusters as a dendrogram viz_file = 'resources/ch03-linkedin/viz/dendogram.html' display(IFrame(viz_file, '100%', '600px')) # In[ ]: viz_file = 'resources/ch03-linkedin/viz/node_link_tree.html' # Visualize clusters as a node-link tree display(IFrame(viz_file, '100%', '600px')) # ## Clustering your LinkedIn professional network based upon the locations of your connections and emitting KML output for visualization with Google Earth # In[ ]: import simplekml # pip install simplekml from cluster import KMeansClustering from cluster.util import centroid # Load this data from where you've previously stored it CONNECTIONS_DATA = 'linkedin_connections.json' # Open up your saved connections with extended profile information # or fetch them again from LinkedIn if you prefer connections = json.loads(open(CONNECTIONS_DATA).read()) # A KML object for storing all your contacts kml_all = simplekml.Kml() for c in connections: location = c['Location'] if location is not None: lat, lon = c['Lat'], c['Lon'] kml_all.newpoint(name='{} {}'.format(c['FirstName'],c['LastName']), coords=[(lon,lat)]) # coords reversed kml_all.save('resources/ch03-linkedin/viz/connections.kml') # Now cluster your contacts using the K-Means algorithm into K clusters K = 10 cl = KMeansClustering([(c['Lat'], c['Lon']) for c in connections if c['Location'] is not None]) # Get the centroids for each of the K clusters centroids = [centroid(c) for c in cl.getclusters(K)] # A KML object for storing the locations of each of the clusters kml_clusters = simplekml.Kml() for i, c in enumerate(centroids): kml_clusters.newpoint(name='Cluster {}'.format(i), coords=[(c[1],c[0])]) # coords reversed kml_clusters.save('resources/ch03-linkedin/viz/kmeans_centroids.kml')